-
1 basic content
Общая лексика: основное содержание -
2 the basic content of the book
Математика: основное содержание книгиУниверсальный англо-русский словарь > the basic content of the book
-
3 basic sugar content
базисная сахаристость сахарной свеклы
Показатель, характеризующий среднее за предшествующие 5 лет содержание сахара в корнеплодах применительно к зоне свеклосеяния, являющийся исходным при расчетах за свекловичное сырье на срок действия пятилетних планов.
[ ГОСТ 20578-85]Тематики
Обобщающие термины
EN
DE
Англо-русский словарь нормативно-технической терминологии > basic sugar content
-
4 Visual Basic Scripting Edition
"A scripting language that is used to create interactive or animated content for the Internet, such as games or advanced financial applications. VBScript is based on Microsoft Visual Basic syntax."English-Arabic terms dictionary > Visual Basic Scripting Edition
-
5 BMC
1) Компьютерная техника: Baseboard Management Controller2) Авиация: bleed air monitoring computer3) Медицина: bone mass content, bone mineral content4) Спорт: British Mountaineering Council5) Военный термин: Battle Management Cell, Black Marine Corps, Chief Boatswains Mate, basic missile checker, bomber medium, conventional6) Техника: background memory controller, binary magnetic core, объёмный ламинированный компаунд, bulk moulding compound7) Шутливое выражение: Big Mike's Choppers8) Химия: magnesium bicarbonate, magnesium carbonate9) Религия: Bible Missionary Church, Brethren Mennonite Council, Build My Church10) Сокращение: Basic Military Compensation, Bryn Mawr College, Bulk Mail Center (21 in 2006 before END implemented)11) Электроника: Bubble memory controller12) Вычислительная техника: block-multiplexed channel13) Иммунология: bone marrow cell14) Фирменный знак: Binghamton Manufacturing Corporation, British Motor Corporation, Business Management Company15) Деловая лексика: Basic Minimum Capital, Business Membership Center16) Почта: bulk mail center, bulk mail center container17) Полимеры: bulk molding composition18) Пластмассы: Bulk Molding Compound19) Психотерапия: (Body-Mind Centering) психосоматическое центрирование (танцевально-двигательная и телесная техника в психотерапии)20) МИД: Budget and Management Committee21) Музеи: British Museum Collection -
6 Bibliography
■ Aitchison, J. (1987). Noam Chomsky: Consensus and controversy. New York: Falmer Press.■ Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco: W. H. Freeman.■ Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.■ Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: W. H. Freeman.■ Archilochus (1971). In M. L. West (Ed.), Iambi et elegi graeci (Vol. 1). Oxford: Oxford University Press.■ Armstrong, D. M. (1990). The causal theory of the mind. In W. G. Lycan (Ed.), Mind and cognition: A reader (pp. 37-47). Cambridge, MA: Basil Blackwell. (Originally published in 1981 in The nature of mind and other essays, Ithaca, NY: University Press).■ Atkins, P. W. (1992). Creation revisited. Oxford: W. H. Freeman & Company.■ Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.■ Bacon, F. (1878). Of the proficience and advancement of learning divine and human. In The works of Francis Bacon (Vol. 1). Cambridge, MA: Hurd & Houghton.■ Bacon, R. (1928). Opus majus (Vol. 2). R. B. Burke (Trans.). Philadelphia, PA: University of Pennsylvania Press.■ Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York: Academic Press.■ Barr, A., & E. A. Feigenbaum (Eds.) (1981). The handbook of artificial intelligence (Vol. 1). Reading, MA: Addison-Wesley.■ Barr, A., & E. A. Feigenbaum (Eds.) (1982). The handbook of artificial intelligence (Vol. 2). Los Altos, CA: William Kaufman.■ Barron, F. X. (1963). The needs for order and for disorder as motives in creative activity. In C. W. Taylor & F. X. Barron (Eds.), Scientific creativity: Its rec ognition and development (pp. 153-160). New York: Wiley.■ Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.■ Bartley, S. H. (1969). Principles of perception. London: Harper & Row.■ Barzun, J. (1959). The house of intellect. New York: Harper & Row.■ Beach, F. A., D. O. Hebb, C. T. Morgan & H. W. Nissen (Eds.) (1960). The neu ropsychology of Lashley. New York: McGraw-Hill.■ Berkeley, G. (1996). Principles of human knowledge: Three Dialogues. Oxford: Oxford University Press. (Originally published in 1710.)■ Berlin, I. (1953). The hedgehog and the fox: An essay on Tolstoy's view of history. NY: Simon & Schuster.■ Bierwisch, J. (1970). Semantics. In J. Lyons (Ed.), New horizons in linguistics. Baltimore: Penguin Books.■ Black, H. C. (1951). Black's law dictionary. St. Paul, MN: West Publishing.■ Bloom, A. (1981). The linguistic shaping of thought: A study in the impact of language on thinking in China and the West. Hillsdale, NJ: Erlbaum.■ Bobrow, D. G., & D. A. Norman (1975). Some principles of memory schemata. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: Stud ies in Cognitive Science (pp. 131-149). New York: Academic Press.■ Boden, M. A. (1977). Artificial intelligence and natural man. New York: Basic Books.■ Boden, M. A. (1981). Minds and mechanisms. Ithaca, NY: Cornell University Press.■ Boden, M. A. (1990a). The creative mind: Myths and mechanisms. London: Cardinal.■ Boden, M. A. (1990b). The philosophy of artificial intelligence. Oxford: Oxford University Press.■ Boden, M. A. (1994). Precis of The creative mind: Myths and mechanisms. Behavioral and brain sciences 17, 519-570.■ Boden, M. (1996). Creativity. In M. Boden (Ed.), Artificial Intelligence (2nd ed.). San Diego: Academic Press.■ Bolter, J. D. (1984). Turing's man: Western culture in the computer age. Chapel Hill, NC: University of North Carolina Press.■ Bolton, N. (1972). The psychology of thinking. London: Methuen.■ Bourne, L. E. (1973). Some forms of cognition: A critical analysis of several papers. In R. Solso (Ed.), Contemporary issues in cognitive psychology (pp. 313324). Loyola Symposium on Cognitive Psychology (Chicago 1972). Washington, DC: Winston.■ Bransford, J. D., N. S. McCarrell, J. J. Franks & K. E. Nitsch (1977). Toward unexplaining memory. In R. Shaw & J. D. Bransford (Eds.), Perceiving, acting, and knowing (pp. 431-466). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Breger, L. (1981). Freud's unfinished journey. London: Routledge & Kegan Paul.■ Brehmer, B. (1986). In one word: Not from experience. In H. R. Arkes & K. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader (pp. 705-719). Cambridge: Cambridge University Press.■ Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan & G. A. Miller (Eds.), Linguistic theory and psychological reality (pp. 1-59). Cambridge, MA: MIT Press.■ Brislin, R. W., W. J. Lonner & R. M. Thorndike (Eds.) (1973). Cross- cultural research methods. New York: Wiley.■ Bronowski, J. (1977). A sense of the future: Essays in natural philosophy. P. E. Ariotti with R. Bronowski (Eds.). Cambridge, MA: MIT Press.■ Bronowski, J. (1978). The origins of knowledge and imagination. New Haven, CT: Yale University Press.■ Brown, R. O. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.■ Brown, T. (1970). Lectures on the philosophy of the human mind. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 330-387). New York: Random House/Modern Library.■ Bruner, J. S., J. Goodnow & G. Austin (1956). A study of thinking. New York: Wiley.■ Calvin, W. H. (1990). The cerebral symphony: Seashore reflections on the structure of consciousness. New York: Bantam.■ Campbell, J. (1982). Grammatical man: Information, entropy, language, and life. New York: Simon & Schuster.■ Campbell, J. (1989). The improbable machine. New York: Simon & Schuster.■ Carlyle, T. (1966). On heroes, hero- worship and the heroic in history. Lincoln: University of Nebraska Press. (Originally published in 1841.)■ Carnap, R. (1959). The elimination of metaphysics through logical analysis of language [Ueberwindung der Metaphysik durch logische Analyse der Sprache]. In A. J. Ayer (Ed.), Logical positivism (pp. 60-81) A. Pap (Trans). New York: Free Press. (Originally published in 1932.)■ Cassirer, E. (1946). Language and myth. New York: Harper and Brothers. Reprinted. New York: Dover Publications, 1953.■ Cattell, R. B., & H. J. Butcher (1970). Creativity and personality. In P. E. Vernon (Ed.), Creativity. Harmondsworth, England: Penguin Books.■ Caudill, M., & C. Butler (1990). Naturally intelligent systems. Cambridge, MA: MIT Press/Bradford Books.■ Chandrasekaran, B. (1990). What kind of information processing is intelligence? A perspective on AI paradigms and a proposal. In D. Partridge & R. Wilks (Eds.), The foundations of artificial intelligence: A sourcebook (pp. 14-46). Cambridge: Cambridge University Press.■ Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.■ Chase, W. G., & H. A. Simon (1988). The mind's eye in chess. In A. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence (pp. 461-493). San Mateo, CA: Kaufmann.■ Cheney, D. L., & R. M. Seyfarth (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.■ Chi, M.T.H., R. Glaser & E. Rees (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7-73). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Chomsky, N. (1957). Syntactic structures. The Hague: Mouton. Janua Linguarum.■ Chomsky, N. (1964). A transformational approach to syntax. In J. A. Fodor & J. J. Katz (Eds.), The structure of language: Readings in the philosophy of lan guage (pp. 211-245). Englewood Cliffs, NJ: Prentice-Hall.■ Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.■ Chomsky, N. (1972). Language and mind (enlarged ed.). New York: Harcourt Brace Jovanovich.■ Chomsky, N. (1979). Language and responsibility. New York: Pantheon.■ Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger Special Studies.■ Churchland, P. (1979). Scientific realism and the plasticity of mind. New York: Cambridge University Press.■ Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.■ Churchland, P. S. (1986). Neurophilosophy. Cambridge, MA: MIT Press/Bradford Books.■ Clark, A. (1996). Philosophical Foundations. In M. A. Boden (Ed.), Artificial in telligence (2nd ed.). San Diego: Academic Press.■ Clark, H. H., & T. B. Carlson (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.), Attention and performance (Vol. 9, pp. 313-330). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Clarke, A. C. (1984). Profiles of the future: An inquiry into the limits of the possible. New York: Holt, Rinehart & Winston.■ Claxton, G. (1980). Cognitive psychology: A suitable case for what sort of treatment? In G. Claxton (Ed.), Cognitive psychology: New directions (pp. 1-25). London: Routledge & Kegan Paul.■ Code, M. (1985). Order and organism. Albany, NY: State University of New York Press.■ Collingwood, R. G. (1972). The idea of history. New York: Oxford University Press.■ Coopersmith, S. (1967). The antecedents of self- esteem. San Francisco: W. H. Freeman.■ Copland, A. (1952). Music and imagination. London: Oxford University Press.■ Coren, S. (1994). The intelligence of dogs. New York: Bantam Books.■ Cottingham, J. (Ed.) (1996). Western philosophy: An anthology. Oxford: Blackwell Publishers.■ Cox, C. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.■ Craik, K.J.W. (1943). The nature of explanation. Cambridge: Cambridge University Press.■ Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.■ Cronbach, L. J., & R. E. Snow (1977). Aptitudes and instructional methods. New York: Irvington. Paperback edition, 1981.■ Csikszentmihalyi, M. (1993). The evolving self. New York: Harper Perennial.■ Culler, J. (1976). Ferdinand de Saussure. New York: Penguin Books.■ Curtius, E. R. (1973). European literature and the Latin Middle Ages. W. R. Trask (Trans.). Princeton, NJ: Princeton University Press.■ D'Alembert, J.L.R. (1963). Preliminary discourse to the encyclopedia of Diderot. R. N. Schwab (Trans.). Indianapolis: Bobbs-Merrill.■ Dampier, W. C. (1966). A history of modern science. Cambridge: Cambridge University Press.■ Darwin, C. (1911). The life and letters of Charles Darwin (Vol. 1). Francis Darwin (Ed.). New York: Appleton.■ Davidson, D. (1970) Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79-101). Amherst: University of Massachussetts Press.■ Davies, P. (1995). About time: Einstein's unfinished revolution. New York: Simon & Schuster/Touchstone.■ Davis, R., & J. J. King (1977). An overview of production systems. In E. Elcock & D. Michie (Eds.), Machine intelligence 8. Chichester, England: Ellis Horwood.■ Davis, R., & D. B. Lenat (1982). Knowledge- based systems in artificial intelligence. New York: McGraw-Hill.■ Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: W. H. Freeman.■ deKleer, J., & J. S. Brown (1983). Assumptions and ambiguities in mechanistic mental models (1983). In D. Gentner & A. L. Stevens (Eds.), Mental modes (pp. 155-190). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Dennett, D. C. (1978a). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1978b). Toward a cognitive theory of consciousness. In D. C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster/Touchstone.■ Descartes, R. (1897-1910). Traite de l'homme. In Oeuvres de Descartes (Vol. 11, pp. 119-215). Paris: Charles Adam & Paul Tannery. (Originally published in 1634.)■ Descartes, R. (1950). Discourse on method. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1637.)■ Descartes, R. (1951). Meditation on first philosophy. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1641.)■ Descartes, R. (1955). The philosophical works of Descartes. E. S. Haldane and G.R.T. Ross (Trans.). New York: Dover. (Originally published in 1911 by Cambridge University Press.)■ Descartes, R. (1967). Discourse on method (Pt. V). In E. S. Haldane and G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 106-118). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970a). Discourse on method. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 181-200). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970b). Principles of philosophy. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178-291). Cambridge: Cambridge University Press. (Originally published in 1644.)■ Descartes, R. (1984). Meditations on first philosophy. In J. Cottingham, R. Stoothoff & D. Murduch (Trans.), The philosophical works of Descartes (Vol. 2). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Descartes, R. (1986). Meditations on first philosophy. J. Cottingham (Trans.). Cambridge: Cambridge University Press. (Originally published in 1641 as Med itationes de prima philosophia.)■ deWulf, M. (1956). An introduction to scholastic philosophy. Mineola, NY: Dover Books.■ Dixon, N. F. (1981). Preconscious processing. London: Wiley.■ Doyle, A. C. (1986). The Boscombe Valley mystery. In Sherlock Holmes: The com plete novels and stories (Vol. 1). New York: Bantam.■ Dreyfus, H., & S. Dreyfus (1986). Mind over machine. New York: Free Press.■ Dreyfus, H. L. (1972). What computers can't do: The limits of artificial intelligence (revised ed.). New York: Harper & Row.■ Dreyfus, H. L., & S. E. Dreyfus (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: Free Press.■ Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.■ Ehrenzweig, A. (1967). The hidden order of art. London: Weidenfeld & Nicolson.■ Einstein, A., & L. Infeld (1938). The evolution of physics. New York: Simon & Schuster.■ Eisenstein, S. (1947). Film sense. New York: Harcourt, Brace & World.■ Everdell, W. R. (1997). The first moderns. Chicago: University of Chicago Press.■ Eysenck, M. W. (1977). Human memory: Theory, research and individual difference. Oxford: Pergamon.■ Eysenck, M. W. (1982). Attention and arousal: Cognition and performance. Berlin: Springer.■ Eysenck, M. W. (1984). A handbook of cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Fancher, R. E. (1979). Pioneers of psychology. New York: W. W. Norton.■ Farrell, B. A. (1981). The standing of psychoanalysis. New York: Oxford University Press.■ Feldman, D. H. (1980). Beyond universals in cognitive development. Norwood, NJ: Ablex.■ Fetzer, J. H. (1996). Philosophy and cognitive science (2nd ed.). New York: Paragon House.■ Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Flanagan, O. (1991). The science of the mind. Cambridge MA: MIT Press/Bradford Books.■ Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.■ Frege, G. (1972). Conceptual notation. T. W. Bynum (Trans.). Oxford: Clarendon Press. (Originally published in 1879.)■ Frege, G. (1979). Logic. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.), Gottlob Frege: Posthumous writings. Chicago: University of Chicago Press. (Originally published in 1879-1891.)■ Freud, S. (1959). Creative writers and day-dreaming. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 9, pp. 143-153). London: Hogarth Press.■ Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The stan dard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295-398). London: Hogarth Press. (Originally published in 1950 as Aus den AnfaЁngen der Psychoanalyse, in London by Imago Publishing.)■ Freud, S. (1976). Lecture 18-Fixation to traumas-the unconscious. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 16, p. 285). London: Hogarth Press.■ Galileo, G. (1990). Il saggiatore [The assayer]. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books. (Originally published in 1623.)■ Gassendi, P. (1970). Letter to Descartes. In "Objections and replies." In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 2, pp. 179-240). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Gazzaniga, M. S. (1988). Mind matters: How mind and brain interact to create our conscious lives. Boston: Houghton Mifflin in association with MIT Press/Bradford Books.■ Genesereth, M. R., & N. J. Nilsson (1987). Logical foundations of artificial intelligence. Palo Alto, CA: Morgan Kaufmann.■ Ghiselin, B. (1952). The creative process. New York: Mentor.■ Ghiselin, B. (1985). The creative process. Berkeley, CA: University of California Press. (Originally published in 1952.)■ Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic Press.■ Glass, A. L., K. J. Holyoak & J. L. Santa (1979). Cognition. Reading, MA: AddisonWesley.■ Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.■ Gruber, H. E. (1980). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.■ Gruber, H. E., & S. Davis (1988). Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge: Cambridge University Press.■ Guthrie, E. R. (1972). The psychology of learning. New York: Harper. (Originally published in 1935.)■ Habermas, J. (1972). Knowledge and human interests. Boston: Beacon Press.■ Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.■ Hand, D. J. (1985). Artificial intelligence and psychiatry. Cambridge: Cambridge University Press.■ Harris, M. (1981). The language myth. London: Duckworth.■ Haugeland, J. (Ed.) (1981). Mind design: Philosophy, psychology, artificial intelligence. Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1981a). The nature and plausibility of cognitivism. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 243-281). Cambridge, MA: MIT Press.■ Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 1-34). Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.■ Hawkes, T. (1977). Structuralism and semiotics. Berkeley: University of California Press.■ Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.■ Hebb, D. O. (1958). A textbook of psychology. Philadelphia: Saunders.■ Hegel, G.W.F. (1910). The phenomenology of mind. J. B. Baille (Trans.). London: Sonnenschein. (Originally published as Phaenomenologie des Geistes, 1807.)■ Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.■ Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: PrenticeHall.■ Herman, A. (1997). The idea of decline in Western history. New York: Free Press.■ Herrnstein, R. J., & E. G. Boring (Eds.) (1965). A source book in the history of psy chology. Cambridge, MA: Harvard University Press.■ Herzmann, E. (1964). Mozart's creative process. In P. H. Lang (Ed.), The creative world of Mozart (pp. 17-30). London: Oldbourne Press.■ Hilgard, E. R. (1957). Introduction to psychology. London: Methuen.■ Hobbes, T. (1651). Leviathan. London: Crooke.■ Holliday, S. G., & M. J. Chandler (1986). Wisdom: Explorations in adult competence. Basel, Switzerland: Karger.■ Horn, J. L. (1986). In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 3). Hillsdale, NJ: Erlbaum.■ Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.■ Hume, D. (1955). An inquiry concerning human understanding. New York: Liberal Arts Press. (Originally published in 1748.)■ Hume, D. (1975). An enquiry concerning human understanding. In L. A. SelbyBigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (Spelling and punctuation revised.) (Originally published in 1748.)■ Hume, D. (1978). A treatise of human nature. L. A. Selby-Bigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (With some modifications of spelling and punctuation.) (Originally published in 1690.)■ Hunt, E. (1973). The memory we must have. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language. (pp. 343-371) San Francisco: W. H. Freeman.■ Husserl, E. (1960). Cartesian meditations. The Hague: Martinus Nijhoff.■ Inhelder, B., & J. Piaget (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. (Originally published in 1955 as De la logique de l'enfant a` la logique de l'adolescent. [Paris: Presses Universitaire de France])■ James, W. (1890a). The principles of psychology (Vol. 1). New York: Dover Books.■ James, W. (1890b). The principles of psychology. New York: Henry Holt.■ Jevons, W. S. (1900). The principles of science (2nd ed.). London: Macmillan.■ Johnson, G. (1986). Machinery of the mind: Inside the new science of artificial intelli gence. New York: Random House.■ Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.■ Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.■ Jones, E. (1961). The life and work of Sigmund Freud. L. Trilling & S. Marcus (Eds.). London: Hogarth.■ Jones, R. V. (1985). Complementarity as a way of life. In A. P. French & P. J. Kennedy (Eds.), Niels Bohr: A centenary volume. Cambridge, MA: Harvard University Press.■ Kant, I. (1933). Critique of Pure Reason (2nd ed.). N. K. Smith (Trans.). London: Macmillan. (Originally published in 1781 as Kritik der reinen Vernunft.)■ Kant, I. (1891). Solution of the general problems of the Prolegomena. In E. Belfort (Trans.), Kant's Prolegomena. London: Bell. (With minor modifications.) (Originally published in 1783.)■ Katona, G. (1940). Organizing and memorizing: Studies in the psychology of learning and teaching. New York: Columbia University Press.■ Kaufman, A. S. (1979). Intelligent testing with the WISC-R. New York: Wiley.■ Koestler, A. (1964). The act of creation. New York: Arkana (Penguin).■ Kohlberg, L. (1971). From is to ought. In T. Mischel (Ed.), Cognitive development and epistemology. (pp. 151-235) New York: Academic Press.■ KoЁhler, W. (1925). The mentality of apes. New York: Liveright.■ KoЁhler, W. (1927). The mentality of apes (2nd ed.). Ella Winter (Trans.). London: Routledge & Kegan Paul.■ KoЁhler, W. (1930). Gestalt psychology. London: G. Bell.■ KoЁhler, W. (1947). Gestalt psychology. New York: Liveright.■ KoЁhler, W. (1969). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.■ Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.■ Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley.■ Langer, S. (1962). Philosophical sketches. Baltimore: Johns Hopkins University Press.■ Langley, P., H. A. Simon, G. L. Bradshaw & J. M. Zytkow (1987). Scientific dis covery: Computational explorations of the creative process. Cambridge, MA: MIT Press.■ Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior, the Hixon Symposium (pp. 112-146) New York: Wiley.■ LeDoux, J. E., & W. Hirst (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge: Cambridge University Press.■ Lehnert, W. (1978). The process of question answering. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Leiber, J. (1991). Invitation to cognitive science. Oxford: Blackwell.■ Lenat, D. B., & G. Harris (1978). Designing a rule system that searches for scientific discoveries. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern directed inference systems (pp. 25-52) New York: Academic Press.■ Levenson, T. (1995). Measure for measure: A musical history of science. New York: Touchstone. (Originally published in 1994.)■ Leґvi-Strauss, C. (1963). Structural anthropology. C. Jacobson & B. Grundfest Schoepf (Trans.). New York: Basic Books. (Originally published in 1958.)■ Levine, M. W., & J. M. Schefner (1981). Fundamentals of sensation and perception. London: Addison-Wesley.■ Lewis, C. I. (1946). An analysis of knowledge and valuation. LaSalle, IL: Open Court.■ Lighthill, J. (1972). A report on artificial intelligence. Unpublished manuscript, Science Research Council.■ Lipman, M., A. M. Sharp & F. S. Oscanyan (1980). Philosophy in the classroom. Philadelphia: Temple University Press.■ Lippmann, W. (1965). Public opinion. New York: Free Press. (Originally published in 1922.)■ Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery Co. (Originally published in 1690.)■ Locke, J. (1975). An essay concerning human understanding. P. H. Nidditch (Ed.). Oxford: Clarendon. (Originally published in 1690.) (With spelling and punctuation modernized and some minor modifications of phrasing.)■ Lopate, P. (1994). The art of the personal essay. New York: Doubleday/Anchor Books.■ Lorimer, F. (1929). The growth of reason. London: Kegan Paul. Machlup, F., & U. Mansfield (Eds.) (1983). The study of information. New York: Wiley.■ Manguel, A. (1996). A history of reading. New York: Viking.■ Markey, J. F. (1928). The symbolic process. London: Kegan Paul.■ Martin, R. M. (1969). On Ziff's "Natural and formal languages." In S. Hook (Ed.), Language and philosophy: A symposium (pp. 249-263). New York: New York University Press.■ Mazlish, B. (1993). The fourth discontinuity: the co- evolution of humans and machines. New Haven, CT: Yale University Press.■ McCarthy, J., & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4. Edinburgh: Edinburgh University Press.■ McClelland, J. L., D. E. Rumelhart & G. E. Hinton (1986). The appeal of parallel distributed processing. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the mi crostructure of cognition (Vol. 1, pp. 3-40). Cambridge, MA: MIT Press/ Bradford Books.■ McCorduck, P. (1979). Machines who think. San Francisco: W. H. Freeman.■ McLaughlin, T. (1970). Music and communication. London: Faber & Faber.■ Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review 69, 431-436.■ Meehl, P. E., & C. J. Golden (1982). Taxometric methods. In Kendall, P. C., & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127-182). New York: Wiley.■ Mehler, J., E.C.T. Walker & M. Garrett (Eds.) (1982). Perspectives on mental rep resentation: Experimental and theoretical studies of cognitive processes and ca pacities. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Mill, J. S. (1900). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific investigation. London: Longmans, Green.■ Miller, G. A. (1979, June). A very personal history. Talk to the Cognitive Science Workshop, Cambridge, MA.■ Miller, J. (1983). States of mind. New York: Pantheon Books.■ Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychology of computer vision (pp. 211-277). New York: McGrawHill.■ Minsky, M., & S. Papert (1973). Artificial intelligence. Condon Lectures, Oregon State System of Higher Education, Eugene, Oregon.■ Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.■ Mischel, T. (1976). Psychological explanations and their vicissitudes. In J. K. Cole & W. J. Arnold (Eds.), Nebraska Symposium on motivation (Vol. 23). Lincoln, NB: University of Nebraska Press.■ Morford, M.P.O., & R. J. Lenardon (1995). Classical mythology (5th ed.). New York: Longman.■ Murdoch, I. (1954). Under the net. New York: Penguin.■ Nagel, E. (1959). Methodological issues in psychoanalytic theory. In S. Hook (Ed.), Psychoanalysis, scientific method, and philosophy: A symposium. New York: New York University Press.■ Nagel, T. (1979). Mortal questions. London: Cambridge University Press.■ Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.■ Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.■ Neisser, U. (1972). Changing conceptions of imagery. In P. W. Sheehan (Ed.), The function and nature of imagery (pp. 233-251). London: Academic Press.■ Neisser, U. (1976). Cognition and reality. San Francisco: W. H. Freeman.■ Neisser, U. (1978). Memory: What are the important questions? In M. M. Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical aspects of memory (pp. 3-24). London: Academic Press.■ Neisser, U. (1979). The concept of intelligence. In R. J. Sternberg & D. K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 179-190). Norwood, NJ: Ablex.■ Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis: University of Minnesota Press.■ Newell, A. (1973a). Artificial intelligence and the concept of mind. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 1-60). San Francisco: W. H. Freeman.■ Newell, A. (1973b). You can't play 20 questions with nature and win. In W. G. Chase (Ed.), Visual information processing (pp. 283-310). New York: Academic Press.■ Newell, A., & H. A. Simon (1963). GPS: A program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). New York & McGraw-Hill.■ Newell, A., & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.■ Nietzsche, F. (1966). Beyond good and evil. W. Kaufmann (Trans.). New York: Vintage. (Originally published in 1885.)■ Nilsson, N. J. (1971). Problem- solving methods in artificial intelligence. New York: McGraw-Hill.■ Nussbaum, M. C. (1978). Aristotle's Princeton University Press. De Motu Anamalium. Princeton, NJ:■ Oersted, H. C. (1920). Thermo-electricity. In Kirstine Meyer (Ed.), H. C. Oersted, Natuurvidenskabelige Skrifter (Vol. 2). Copenhagen: n.p. (Originally published in 1830 in The Edinburgh encyclopaedia.)■ Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.■ Onians, R. B. (1954). The origins of European thought. Cambridge, MA: Cambridge University Press.■ Osgood, C. E. (1960). Method and theory in experimental psychology. New York: Oxford University Press. (Originally published in 1953.)■ Osgood, C. E. (1966). Language universals and psycholinguistics. In J. H. Greenberg (Ed.), Universals of language (2nd ed., pp. 299-322). Cambridge, MA: MIT Press.■ Palmer, R. E. (1969). Hermeneutics. Evanston, IL: Northwestern University Press.■ Peirce, C. S. (1934). Some consequences of four incapacities-Man, a sign. In C. Hartsborne & P. Weiss (Eds.), Collected papers of Charles Saunders Peirce (Vol. 5, pp. 185-189). Cambridge, MA: Harvard University Press.■ Penfield, W. (1959). In W. Penfield & L. Roberts, Speech and brain mechanisms. Princeton, NJ: Princeton University Press.■ Penrose, R. (1994). Shadows of the mind: A search for the missing science of conscious ness. Oxford: Oxford University Press.■ Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.■ Peterfreund, E. (1986). The heuristic approach to psychoanalytic therapy. In■ J. Reppen (Ed.), Analysts at work, (pp. 127-144). Hillsdale, NJ: Analytic Press.■ Piaget, J. (1952). The origin of intelligence in children. New York: International Universities Press. (Originally published in 1936.)■ Piaget, J. (1954). Le langage et les opeґrations intellectuelles. Proble` mes de psycho linguistique. Symposium de l'Association de Psychologie Scientifique de Langue Francёaise. Paris: Presses Universitaires de France.■ Piaget, J. (1977). Problems of equilibration. In H. E. Gruber & J. J. Voneche (Eds.), The essential Piaget (pp. 838-841). London: Routlege & Kegan Paul. (Originally published in 1975 as L'eґquilibration des structures cognitives [Paris: Presses Universitaires de France].)■ Piaget, J., & B. Inhelder. (1973). Memory and intelligence. New York: Basic Books.■ Pinker, S. (1994). The language instinct. New York: Morrow.■ Pinker, S. (1996). Facts about human language relevant to its evolution. In J.-P. Changeux & J. Chavaillon (Eds.), Origins of the human brain. A symposium of the Fyssen foundation (pp. 262-283). Oxford: Clarendon Press. Planck, M. (1949). Scientific autobiography and other papers. F. Gaynor (Trans.). New York: Philosophical Library.■ Planck, M. (1990). Wissenschaftliche Selbstbiographie. W. Berg (Ed.). Halle, Germany: Deutsche Akademie der Naturforscher Leopoldina.■ Plato (1892). Meno. In The Dialogues of Plato (B. Jowett, Trans.; Vol. 2). New York: Clarendon. (Originally published circa 380 B.C.)■ Poincareґ, H. (1913). Mathematical creation. In The foundations of science. G. B. Halsted (Trans.). New York: Science Press.■ Poincareґ, H. (1921). The foundations of science: Science and hypothesis, the value of science, science and method. G. B. Halstead (Trans.). New York: Science Press.■ Poincareґ, H. (1929). The foundations of science: Science and hypothesis, the value of science, science and method. New York: Science Press.■ Poincareґ, H. (1952). Science and method. F. Maitland (Trans.) New York: Dover.■ Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.■ Polanyi, M. (1958). Personal knowledge. London: Routledge & Kegan Paul.■ Popper, K. (1968). Conjectures and refutations: The growth of scientific knowledge. New York: Harper & Row/Basic Books.■ Popper, K., & J. Eccles (1977). The self and its brain. New York: Springer-Verlag.■ Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.■ Putnam, H. (1975). Mind, language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.■ Putnam, H. (1987). The faces of realism. LaSalle, IL: Open Court.■ Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. In N. Block (Ed.), Imagery (pp. 151-206). Cambridge, MA: MIT Press.■ Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation for cog nitive science. Cambridge, MA: MIT Press/Bradford Books.■ Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216-260). Cambridge, MA: MIT Press.■ Quine, W.V.O. (1960). Word and object. Cambridge, MA: Harvard University Press.■ Rabbitt, P.M.A., & S. Dornic (Eds.). Attention and performance (Vol. 5). London: Academic Press.■ Rawlins, G.J.E. (1997). Slaves of the Machine: The quickening of computer technology. Cambridge, MA: MIT Press/Bradford Books.■ Reid, T. (1970). An inquiry into the human mind on the principles of common sense. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 151-178). New York: Random House/Modern Library.■ Reitman, W. (1970). What does it take to remember? In D. A. Norman (Ed.), Models of human memory (pp. 470-510). London: Academic Press.■ Ricoeur, P. (1974). Structure and hermeneutics. In D. I. Ihde (Ed.), The conflict of interpretations: Essays in hermeneutics (pp. 27-61). Evanston, IL: Northwestern University Press.■ Robinson, D. N. (1986). An intellectual history of psychology. Madison: University of Wisconsin Press.■ Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.■ Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross cultural psychology (Vol. 1, pp. 1-49) London: Academic Press.■ Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rosch, E., & B. B. Lloyd (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rose, S. (1970). The chemistry of life. Baltimore: Penguin Books.■ Rose, S. (1976). The conscious brain (updated ed.). New York: Random House.■ Rose, S. (1993). The making of memory: From molecules to mind. New York: Anchor Books. (Originally published in 1992)■ Roszak, T. (1994). The cult of information: A neo- Luddite treatise on high- tech, artificial intelligence, and the true art of thinking (2nd ed.). Berkeley: University of California Press.■ Royce, J. R., & W. W. Rozeboom (Eds.) (1972). The psychology of knowing. New York: Gordon & Breach.■ Rumelhart, D. E. (1977). Introduction to human information processing. New York: Wiley.■ Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rumelhart, D. E., & J. L. McClelland (1986). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.■ Rumelhart, D. E., P. Smolensky, J. L. McClelland & G. E. Hinton (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart & the PDP Research Group (Eds.), Parallel Distributed Processing (Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.■ Russell, B. (1927). An outline of philosophy. London: G. Allen & Unwin.■ Russell, B. (1961). History of Western philosophy. London: George Allen & Unwin.■ Russell, B. (1965). How I write. In Portraits from memory and other essays. London: Allen & Unwin.■ Russell, B. (1992). In N. Griffin (Ed.), The selected letters of Bertrand Russell (Vol. 1), The private years, 1884- 1914. Boston: Houghton Mifflin. Ryecroft, C. (1966). Psychoanalysis observed. London: Constable.■ Sagan, C. (1978). The dragons of Eden: Speculations on the evolution of human intel ligence. New York: Ballantine Books.■ Salthouse, T. A. (1992). Expertise as the circumvention of human processing limitations. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Sanford, A. J. (1987). The mind of man: Models of human understanding. New Haven, CT: Yale University Press.■ Sapir, E. (1921). Language. New York: Harcourt, Brace, and World.■ Sapir, E. (1964). Culture, language, and personality. Berkeley: University of California Press. (Originally published in 1941.)■ Sapir, E. (1985). The status of linguistics as a science. In D. G. Mandelbaum (Ed.), Selected writings of Edward Sapir in language, culture and personality (pp. 160166). Berkeley: University of California Press. (Originally published in 1929).■ Scardmalia, M., & C. Bereiter (1992). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Schafer, R. (1954). Psychoanalytic interpretation in Rorschach testing. New York: Grune & Stratten.■ Schank, R. C. (1973). Identification of conceptualizations underlying natural language. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 187-248). San Francisco: W. H. Freeman.■ Schank, R. C. (1976). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory. (pp. 162-189) San Francisco: W. H. Freeman.■ Schank, R. C. (1986). Explanation patterns: Understanding mechanically and creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Schank, R. C., & R. P. Abelson (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.■ SchroЁdinger, E. (1951). Science and humanism. Cambridge: Cambridge University Press.■ Searle, J. R. (1981a). Minds, brains, and programs. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 282-306). Cambridge, MA: MIT Press.■ Searle, J. R. (1981b). Minds, brains and programs. In D. Hofstadter & D. Dennett (Eds.), The mind's I (pp. 353-373). New York: Basic Books.■ Searle, J. R. (1983). Intentionality. New York: Cambridge University Press.■ Serres, M. (1982). The origin of language: Biology, information theory, and thermodynamics. M. Anderson (Trans.). In J. V. Harari & D. F. Bell (Eds.), Hermes: Literature, science, philosophy (pp. 71-83). Baltimore: Johns Hopkins University Press.■ Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22-40). Pittsburgh: University of Pittsburgh Press.■ Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.■ Simon, H. A. (1989). The scientist as a problem solver. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon. Hillsdale, N.J.: Lawrence Erlbaum Associates.■ Simon, H. A., & C. Kaplan (1989). Foundations of cognitive science. In M. Posner (Ed.), Foundations of cognitive science (pp. 1-47). Cambridge, MA: MIT Press.■ Simonton, D. K. (1988). Creativity, leadership and chance. In R. J. Sternberg (Ed.), The nature of creativity. Cambridge: Cambridge University Press.■ Skinner, B. F. (1974). About behaviorism. New York: Knopf.■ Smith, E. E. (1988). Concepts and thought. In J. Sternberg & E. E. Smith (Eds.), The psychology of human thought (pp. 19-49). Cambridge: Cambridge University Press.■ Smith, E. E. (1990). Thinking: Introduction. In D. N. Osherson & E. E. Smith (Eds.), Thinking. An invitation to cognitive science. (Vol. 3, pp. 1-2). Cambridge, MA: MIT Press.■ Socrates. (1958). Meno. In E. H. Warmington & P. O. Rouse (Eds.), Great dialogues of Plato W.H.D. Rouse (Trans.). New York: New American Library. (Original publication date unknown.)■ Solso, R. L. (1974). Theories of retrieval. In R. L. Solso (Ed.), Theories in cognitive psychology. Potomac, MD: Lawrence Erlbaum Associates.■ Spencer, H. (1896). The principles of psychology. New York: Appleton-CenturyCrofts.■ Steiner, G. (1975). After Babel: Aspects of language and translation. New York: Oxford University Press.■ Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Sternberg, R. J. (1994). Intelligence. In R. J. Sternberg, Thinking and problem solving. San Diego: Academic Press.■ Sternberg, R. J., & J. E. Davidson (1985). Cognitive development in gifted and talented. In F. D. Horowitz & M. O'Brien (Eds.), The gifted and talented (pp. 103-135). Washington, DC: American Psychological Association.■ Storr, A. (1993). The dynamics of creation. New York: Ballantine Books. (Originally published in 1972.)■ Stumpf, S. E. (1994). Philosophy: History and problems (5th ed.). New York: McGraw-Hill.■ Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics, and creative lives. New York: Random House/Vintage Books.■ Thorndike, E. L. (1906). Principles of teaching. New York: A. G. Seiler.■ Thorndike, E. L. (1970). Animal intelligence: Experimental studies. Darien, CT: Hafner Publishing Co. (Originally published in 1911.)■ Titchener, E. B. (1910). A textbook of psychology. New York: Macmillan.■ Titchener, E. B. (1914). A primer of psychology. New York: Macmillan.■ Toulmin, S. (1957). The philosophy of science. London: Hutchinson.■ Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organisation of memory. London: Academic Press.■ Turing, A. (1946). In B. E. Carpenter & R. W. Doran (Eds.), ACE reports of 1946 and other papers. Cambridge, MA: MIT Press.■ Turkle, S. (1984). Computers and the second self: Computers and the human spirit. New York: Simon & Schuster.■ Tyler, S. A. (1978). The said and the unsaid: Mind, meaning, and culture. New York: Academic Press.■ van Heijenoort (Ed.) (1967). From Frege to Goedel. Cambridge: Harvard University Press.■ Varela, F. J. (1984). The creative circle: Sketches on the natural history of circularity. In P. Watzlawick (Ed.), The invented reality (pp. 309-324). New York: W. W. Norton.■ Voltaire (1961). On the Penseґs of M. Pascal. In Philosophical letters (pp. 119-146). E. Dilworth (Trans.). Indianapolis: Bobbs-Merrill.■ Wagman, M. (1991a). Artificial intelligence and human cognition: A theoretical inter comparison of two realms of intellect. Westport, CT: Praeger.■ Wagman, M. (1991b). Cognitive science and concepts of mind: Toward a general theory of human and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1993). Cognitive psychology and artificial intelligence: Theory and re search in cognitive science. Westport, CT: Praeger.■ Wagman, M. (1995). The sciences of cognition: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1996). Human intellect and cognitive science: Toward a general unified theory of intelligence. Westport, CT: Praeger.■ Wagman, M. (1997a). Cognitive science and the symbolic operations of human and artificial intelligence: Theory and research into the intellective processes. Westport, CT: Praeger.■ Wagman, M. (1997b). The general unified theory of intelligence: Central conceptions and specific application to domains of cognitive science. Westport, CT: Praeger.■ Wagman, M. (1998a). Cognitive science and the mind- body problem: From philosophy to psychology to artificial intelligence to imaging of the brain. Westport, CT: Praeger.■ Wagman, M. (1998b). Language and thought in humans and computers: Theory and research in psychology, artificial intelligence, and neural science. Westport, CT: Praeger.■ Wagman, M. (1998c). The ultimate objectives of artificial intelligence: Theoretical and research foundations, philosophical and psychological implications. Westport, CT: Praeger.■ Wagman, M. (1999). The human mind according to artificial intelligence: Theory, re search, and implications. Westport, CT: Praeger.■ Wagman, M. (2000). Scientific discovery processes in humans and computers: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wall, R. (1972). Introduction to mathematical linguistics. Englewood Cliffs, NJ: Prentice-Hall.■ Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace & Co.■ Wason, P. (1977). Self contradictions. In P. Johnson-Laird & P. Wason (Eds.), Thinking: Readings in cognitive science. Cambridge: Cambridge University Press.■ Wason, P. C., & P. N. Johnson-Laird. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.■ Watson, J. (1930). Behaviorism. New York: W. W. Norton.■ Watzlawick, P. (1984). Epilogue. In P. Watzlawick (Ed.), The invented reality. New York: W. W. Norton, 1984.■ Weinberg, S. (1977). The first three minutes: A modern view of the origin of the uni verse. New York: Basic Books.■ Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.■ Weizenbaum, J. (1976). Computer power and human reason: From judgment to cal culation. San Francisco: W. H. Freeman.■ Wertheimer, M. (1945). Productive thinking. New York: Harper & Bros.■ Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.■ Whorf, B. L. (1956). In J. B. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.■ Whyte, L. L. (1962). The unconscious before Freud. New York: Anchor Books.■ Wiener, N. (1954). The human use of human beings. Boston: Houghton Mifflin.■ Wiener, N. (1964). God & Golem, Inc.: A comment on certain points where cybernetics impinges on religion. Cambridge, MA: MIT Press.■ Winograd, T. (1972). Understanding natural language. New York: Academic Press.■ Winston, P. H. (1987). Artificial intelligence: A perspective. In E. L. Grimson & R. S. Patil (Eds.), AI in the 1980s and beyond (pp. 1-12). Cambridge, MA: MIT Press.■ Winston, P. H. (Ed.) (1975). The psychology of computer vision. New York: McGrawHill.■ Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.■ Wittgenstein, L. (1958). The blue and brown books. New York: Harper Colophon.■ Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G. Bobrow & A. Collins (Eds.), Representations and understanding: Studies in cognitive science (pp. 35-84). New York: Academic Press.■ Woodworth, R. S. (1938). Experimental psychology. New York: Holt; London: Methuen (1939).■ Wundt, W. (1904). Principles of physiological psychology (Vol. 1). E. B. Titchener (Trans.). New York: Macmillan.■ Wundt, W. (1907). Lectures on human and animal psychology. J. E. Creighton & E. B. Titchener (Trans.). New York: Macmillan.■ Young, J. Z. (1978). Programs of the brain. New York: Oxford University Press.■ Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.Historical dictionary of quotations in cognitive science > Bibliography
-
7 Creativity
Put in this bald way, these aims sound utopian. How utopian they areor rather, how imminent their realization-depends on how broadly or narrowly we interpret the term "creative." If we are willing to regard all human complex problem solving as creative, then-as we will point out-successful programs for problem solving mechanisms that simulate human problem solvers already exist, and a number of their general characteristics are known. If we reserve the term "creative" for activities like discovery of the special theory of relativity or the composition of Beethoven's Seventh Symphony, then no example of a creative mechanism exists at the present time. (Simon, 1979, pp. 144-145)Among the questions that can now be given preliminary answers in computational terms are the following: how can ideas from very different sources be spontaneously thought of together? how can two ideas be merged to produce a new structure, which shows the influence of both ancestor ideas without being a mere "cut-and-paste" combination? how can the mind be "primed," so that one will more easily notice serendipitous ideas? why may someone notice-and remember-something fairly uninteresting, if it occurs in an interesting context? how can a brief phrase conjure up an entire melody from memory? and how can we accept two ideas as similar ("love" and "prove" as rhyming, for instance) in respect of a feature not identical in both? The features of connectionist AI models that suggest answers to these questions are their powers of pattern completion, graceful degradation, sensitization, multiple constraint satisfaction, and "best-fit" equilibration.... Here, the important point is that the unconscious, "insightful," associative aspects of creativity can be explained-in outline, at least-by AI methods. (Boden, 1996, p. 273)There thus appears to be an underlying similarity in the process involved in creative innovation and social independence, with common traits and postures required for expression of both behaviors. The difference is one of product-literary, musical, artistic, theoretical products on the one hand, opinions on the other-rather than one of process. In both instances the individual must believe that his perceptions are meaningful and valid and be willing to rely upon his own interpretations. He must trust himself sufficiently that even when persons express opinions counter to his own he can proceed on the basis of his own perceptions and convictions. (Coopersmith, 1967, p. 58)he average level of ego strength and emotional stability is noticeably higher among creative geniuses than among the general population, though it is possibly lower than among men of comparable intelligence and education who go into administrative and similar positions. High anxiety and excitability appear common (e.g. Priestley, Darwin, Kepler) but full-blown neurosis is quite rare. (Cattell & Butcher, 1970, p. 315)he insight that is supposed to be required for such work as discovery turns out to be synonymous with the familiar process of recognition; and other terms commonly used in the discussion of creative work-such terms as "judgment," "creativity," or even "genius"-appear to be wholly dispensable or to be definable, as insight is, in terms of mundane and well-understood concepts. (Simon, 1989, p. 376)From the sketch material still in existence, from the condition of the fragments, and from the autographs themselves we can draw definite conclusions about Mozart's creative process. To invent musical ideas he did not need any stimulation; they came to his mind "ready-made" and in polished form. In contrast to Beethoven, who made numerous attempts at shaping his musical ideas until he found the definitive formulation of a theme, Mozart's first inspiration has the stamp of finality. Any Mozart theme has completeness and unity; as a phenomenon it is a Gestalt. (Herzmann, 1964, p. 28)Great artists enlarge the limits of one's perception. Looking at the world through the eyes of Rembrandt or Tolstoy makes one able to perceive aspects of truth about the world which one could not have achieved without their aid. Freud believed that science was adaptive because it facilitated mastery of the external world; but was it not the case that many scientific theories, like works of art, also originated in phantasy? Certainly, reading accounts of scientific discovery by men of the calibre of Einstein compelled me to conclude that phantasy was not merely escapist, but a way of reaching new insights concerning the nature of reality. Scientific hypotheses require proof; works of art do not. Both are concerned with creating order, with making sense out of the world and our experience of it. (Storr, 1993, p. xii)The importance of self-esteem for creative expression appears to be almost beyond disproof. Without a high regard for himself the individual who is working in the frontiers of his field cannot trust himself to discriminate between the trivial and the significant. Without trust in his own powers the person seeking improved solutions or alternative theories has no basis for distinguishing the significant and profound innovation from the one that is merely different.... An essential component of the creative process, whether it be analysis, synthesis, or the development of a new perspective or more comprehensive theory, is the conviction that one's judgment in interpreting the events is to be trusted. (Coopersmith, 1967, p. 59)In the daily stream of thought these four different stages [preparation; incubation; illumination or inspiration; and verification] constantly overlap each other as we explore different problems. An economist reading a Blue Book, a physiologist watching an experiment, or a business man going through his morning's letters, may at the same time be "incubating" on a problem which he proposed to himself a few days ago, be accumulating knowledge in "preparation" for a second problem, and be "verifying" his conclusions to a third problem. Even in exploring the same problem, the mind may be unconsciously incubating on one aspect of it, while it is consciously employed in preparing for or verifying another aspect. (Wallas, 1926, p. 81)he basic, bisociative pattern of the creative synthesis [is] the sudden interlocking of two previously unrelated skills, or matrices of thought. (Koestler, 1964, p. 121)11) The Earliest Stages in the Creative Process Involve a Commerce with DisorderEven to the creator himself, the earliest effort may seem to involve a commerce with disorder. For the creative order, which is an extension of life, is not an elaboration of the established, but a movement beyond the established, or at least a reorganization of it and often of elements not included in it. The first need is therefore to transcend the old order. Before any new order can be defined, the absolute power of the established, the hold upon us of what we know and are, must be broken. New life comes always from outside our world, as we commonly conceive that world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." (Ghiselin, 1985, p. 4)New life comes always from outside our world, as we commonly conceive our world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." Chaos and disorder are perhaps the wrong terms for that indeterminate fullness and activity of the inner life. For it is organic, dynamic, full of tension and tendency. What is absent from it, except in the decisive act of creation, is determination, fixity, and commitment to one resolution or another of the whole complex of its tensions. (Ghiselin, 1952, p. 13)[P]sychoanalysts have principally been concerned with the content of creative products, and with explaining content in terms of the artist's infantile past. They have paid less attention to examining why the artist chooses his particular activity to express, abreact or sublimate his emotions. In short, they have not made much distinction between art and neurosis; and, since the former is one of the blessings of mankind, whereas the latter is one of the curses, it seems a pity that they should not be better differentiated....Psychoanalysis, being fundamentally concerned with drive and motive, might have been expected to throw more light upon what impels the creative person that in fact it has. (Storr, 1993, pp. xvii, 3)A number of theoretical approaches were considered. Associative theory, as developed by Mednick (1962), gained some empirical support from the apparent validity of the Remote Associates Test, which was constructed on the basis of the theory.... Koestler's (1964) bisociative theory allows more complexity to mental organization than Mednick's associative theory, and postulates "associative contexts" or "frames of reference." He proposed that normal, non-creative, thought proceeds within particular contexts or frames and that the creative act involves linking together previously unconnected frames.... Simonton (1988) has developed associative notions further and explored the mathematical consequences of chance permutation of ideas....Like Koestler, Gruber (1980; Gruber and Davis, 1988) has based his analysis on case studies. He has focused especially on Darwin's development of the theory of evolution. Using piagetian notions, such as assimilation and accommodation, Gruber shows how Darwin's system of ideas changed very slowly over a period of many years. "Moments of insight," in Gruber's analysis, were the culminations of slow long-term processes.... Finally, the information-processing approach, as represented by Simon (1966) and Langley et al. (1987), was considered.... [Simon] points out the importance of good problem representations, both to ensure search is in an appropriate problem space and to aid in developing heuristic evaluations of possible research directions.... The work of Langley et al. (1987) demonstrates how such search processes, realized in computer programs, can indeed discover many basic laws of science from tables of raw data.... Boden (1990a, 1994) has stressed the importance of restructuring the problem space in creative work to develop new genres and paradigms in the arts and sciences. (Gilhooly, 1996, pp. 243-244; emphasis in original)Historical dictionary of quotations in cognitive science > Creativity
-
8 steel
сталь || стальной- abrasion-resistant steel
- acid Bessemer steel
- acid electric steel
- acid open-hearth steel
- acid steel
- acid-resisting steel
- age-hardenable steel
- ageing steel
- aircraft structural steel
- air-hardened steel
- air-hardening steel
- air-melted steel
- alkaliproof steel
- alkali-resistant steel
- alloy steel
- alloy tool steel
- alloyed steel
- alphatized steel
- aluminized steel
- aluminum grain-refined steel
- aluminum steel
- aluminum-coated steel
- aluminum-nickel steel
- aluminum-stabilized steel
- anchor steel
- angle steel
- annealed steel
- anticorrosion steel
- arc-furnace steel
- armco steel
- ausaging steel
- ausforming steel
- austenitic manganese steel
- austenitic Ni-Cr stainless steel
- austenitic stainless steel
- austenitic steel
- austenitic-carbidic steel
- austenitic-intermetallic steel
- automatic steel
- automobile steel
- axle steel
- bainitically heat-treated steel
- balanced steel
- ball bearing steel
- banding steel
- bandsaw steel
- bar steel
- basic Bessemer steel
- basic converter steel
- basic open-hearth steel
- basic oxygen steel
- bearing steel
- bearing-grade steel
- beaten steel
- beryllium steel
- Bessemer steel
- blanking steel
- blister steel
- blue steel
- boiler steel
- boron steel
- bottle-top steel
- bottom-run steel
- bright drawing steel
- bright steel
- bright-drawn steel
- bright-finished steel
- bronze steel
- bulb steel
- bulb-angle steel
- burned steel
- capped steel
- carbon nitrided steel
- carbon steel
- carbon tool steel
- carbonized steel
- carbon-martensite steel
- carbon-molybdenum steel
- carbon-vacuum deoxidized steel
- carburized steel
- carburizing steel
- case-hardened steel
- case-hardening steel
- cast steel
- cemented steel
- chain steel
- chilled steel
- chisel steel
- chrome steel
- chrome-manganese steel
- chrome-molybdenum steel
- chrome-nickel steel
- chrome-nickel-alloy steel
- chrome-nickel-molibdenum steel
- chrome-plated steel
- chrome-tungsten steel
- chrome-vanadium steel
- chromium steel
- chromium tool steel
- chromium-aluminum steel
- chromium-cobalt steel
- chromium-copper steel
- chromium-manganese steel
- chromium-molibdenum steel
- chromium-nickel steel
- chromium-nickel-molybdenum steel
- chromium-silicon steel
- chromium-tungsten steel
- chromium-tungsten-vanadium steel
- chromized steel
- clad steel
- cobalt steel
- cobalt-nickel steel
- coiled steel
- cold work steel
- cold-drawn steel
- cold-heading steel
- cold-rolled steel
- columbium-stabilized steel
- commercial forging steel
- commercial quality steel
- commercial steel
- common steel
- composite steel
- compound steel
- concrete-prestressing steel
- concrete-reinforcing steel
- constructional steel
- consumable electrode vacuum-melted steel
- controlled rimming steel
- converted steel
- converter steel
- copper steel
- copper-bearing steel
- copper-chromium steel
- copperclad steel
- copper-nickel steel
- copper-plated steel
- corrosion-resistant steel
- corrosion-resisting steel
- corrugated sheet steel
- CQ steel
- creep-resisting steel
- crucible steel
- crude steel
- cutlery-type stainless steel
- cyanided steel
- damascus steel
- damask steel
- DDQ steel
- dead-hard steel
- dead-melted steel
- dead-soft steel
- deep drawing quality steel
- deep drawing steel
- deep-hardening steel
- degasified steel
- deoxidized steel
- diamond tread steel
- die steel
- direct-process steel
- dirty steel
- dopped steel
- double-reduced steel
- double-refined steel
- double-shear steel
- drawn steel
- drill steel
- duplex steel
- dynamo sheet steel
- dynamo steel
- easily deformable steel
- EDD steel
- effervescent steel
- electric furnace steel
- electric steel
- electric tool steel
- electrical furnace steel
- emergency steel
- eutectoid steel
- exotic steel
- exposed quality steel
- extra deep drawing steel
- extrafine steel
- extrahard steel
- extrahigh tensile steel
- extrasoft steel
- face-hardened steel
- fagoted steel
- fashioned steel
- fast-finishing steel
- fast-machine steel
- faulty steel
- ferrite steel
- ferritic stainless steel
- ferritic steel
- fiery steel
- figured steel
- file steel
- fine steel
- fine-grained steel
- finished steel
- first quality steel
- flange steel
- flat steel
- flat-bulb steel
- flat-rolled steel
- forge steel
- forged steel
- forging die steel
- forging steel
- free-cutting steel
- free-machining steel
- fully deoxidized steel
- fully finished steel
- galvanized steel
- gear steel
- general purpose steel
- glass-hard steel
- grade steel
- graphitic steel
- graphitizable steel
- gun barrels steel
- gun steel
- Hadfield steel
- half-hard steel
- Halvan tool steel
- hammered steel
- hard cast steel
- hard steel
- hard-chrome steel
- hardened steel
- hard-grain steel
- heat-resistant steel
- heat-treated steel
- heavily alloyed steel
- heavy-fagoted steel
- heavy-melting steel
- hexagonal steel
- high-alloy steel
- high-carbon steel
- high-chromium steel
- high-cobalt steel
- high-creep strength steel
- high-ductility steel
- high-elastic limit steel
- higher-carbon steel
- high-grade steel
- high-hardenability core steel
- high-hardenability steel
- high-manganese steel
- high-nickel steel
- high-permeability steel
- high-quality steel
- high-resistance steel
- high-speed steel
- high-strength low alloy steel
- high-strength steel
- high-sulphur steel
- high-temperature steel
- high-tensile steel
- hollow drill steel
- hot die steel
- hot-brittle steel
- hot-rolled steel
- hot-work steel
- hot-working die steel
- hot-working steel
- HSLA steel
- H-steel
- hypereutectoid steel
- hyperpearlitic steel
- hypoeutectoid steel
- hypopearlitic steel
- Indian steel
- induction furnace steel
- induction vacuum melted steel
- ingot steel
- intermediate-alloy steel
- iron-chromium stainless steel
- irreversible steel
- killed steel
- knife steel
- knife-blade steel
- lead-coated steel
- leaded steel
- lean alloy steel
- ledeburitic steel
- light gage steel
- liquid-compressed steel
- loman steel
- low earing steel
- low-alloy steel
- low-alloyed steel
- low-carbon steel
- low-ductility steel
- low-expansion steel
- low-hardenability steel
- low-hardening steel
- low-manganese steel
- low-nickel steel
- low-phosphorus steel
- low-texture steel
- machine-tool steel
- magnet steel
- mandrel steel
- manganese steel
- manganese-killed steel
- manganese-silicon steel
- maraging steel
- martempering steel
- martensitic steel
- mechanically capped steel
- medium alloy steel
- medium-carbon steel
- medium-hard steel
- medium-strength steel
- medium-temper steel
- merchant steel
- mild steel
- milling steel
- mixed steel
- molybdenum steel
- needled steel
- nickel steel
- nickel-chrome steel
- nickel-chrome-molybdenum steel
- nickel-chromium steel
- nickel-chromium-molybdenum steel
- nickel-clad steel
- nickel-molybdenum steel
- nitrided steel
- nonaging steel
- noncorrosive steel
- nondeforming steel
- nonhardening steel
- nonmagnetic steel
- nonpiping steel
- nonrustic steel
- nonshrinking steel
- nonstrain-aging steel
- normal steel
- octagon steel
- oil-hardening steel
- open-hearth steel
- open-poured steel
- ordinary steel
- oriented steel
- overblown steel
- overheated steel
- over-reduced steel
- oxidation-resisting steel
- paragon steel
- pearlitic steel
- perished steel
- permanent-magnet steel
- PH steel
- piled steel
- pipe steel
- piped steel
- plain carbon steel
- plain steel
- planished sheet steel
- planished steel
- plate steel
- plow steel
- pneumatic steel
- polished sheet steel
- polished steel
- pot steel
- powder metallurgical compacted steel
- powdered metal high-speed steel
- precipitation-hardening steel
- precision steel
- pressure vessel steel
- primary steel
- puddle steel
- puddled steel
- punching steel
- purified steel
- PV steel
- QT steel
- quality steel
- quenched-and-tempered steel
- quick-cutting steel
- quick-speed steel
- rail steel
- railway structural steel
- rapid machining steel
- rapid steel
- raw steel
- red-hard steel
- refined steel
- refining steel
- refractory steel
- reinforcing steel
- rephosphorized steel
- resilient steel
- resulphurized steel
- rimmed steel
- rimming steel
- rising steel
- rivet steel
- rolled section steel
- rolled steel
- roller-bearing steel
- rose steel
- round steel
- rustless steel
- rust-resisting steel
- saw steel
- scrap steel
- screw steel
- secondary steel
- section steel
- selenium steel
- self-hardening steel
- semideoxidized steel
- semifinished steel
- semikilled steel
- shallow-hardening steel
- shape steel
- shear steel
- shearing steel
- sheet steel
- shock-resisting steel
- Siemens-Martin steel
- silchrome steel
- silicon steel
- silicon-killed steel
- silicon-manganese steel
- silver steel
- simple steel
- skelp steel
- slowly cooled steel
- soft steel
- special steel
- special treatment steel
- spheroidized steel
- spotty steel
- spring steel
- stabilized steel
- stainless clad steel
- stainless steel
- standard steel
- stock steel
- strain-aged steel
- stress-relieved annealed steel
- strip steel
- strong steel
- structural steel
- super-corrosion-resistant stainless steel
- superduty steel
- surface-hardening steel
- surgical steel
- tap steel
- tapped-on-carbon steel
- T-bulb steel
- tee-bulb steel
- tempered steel
- tensile strength steel
- ternary steel
- thermostrengthened steel
- Thomas steel
- through-hardening steel
- titanium steel
- titanium-stabilized steel
- tool steel
- Tor steel
- transformation induced plasticity steel
- transformer steel
- treated steel
- TRIP steel
- tube steel
- tungsten steel
- turbohearth steel
- two-ply steel
- tyre steel
- ultrastrong steel
- unkilled steel
- unsound steel
- vacuum carbon deoxidized steel
- vacuum degased steel
- vacuum-cast steel
- vacuum-induction melted steel
- vacuum-remelted steel
- valve steel
- vanadium steel
- water-hardening steel
- wear-resisting alloy steel
- weathering steel
- weld steel
- weldable steel
- welding steel
- wild steel
- wire rope steel
- Wootz steel
- wrought steelEnglish-Russian dictionary of mechanical engineering and automation > steel
-
9 stuff
I
noun1) (material or substance: What is that black oily stuff on the beach?; The doctor gave me some good stuff for removing warts; Show them what stuff you're made of! (= how brave, strong etc you are).) materia; material; sustancia; cosa2) ((unimportant) matter, things, objects etc: We'll have to get rid of all this stuff when we move house.) cosas; chismes, cachivaches, trastos3) (an old word for cloth.) paño, tela; género•- that's the stuff!
II
verb1) (to pack or fill tightly, often hurriedly or untidily: His drawer was stuffed with papers; She stuffed the fridge with food; The children have been stuffing themselves with ice-cream.) atiborrar(se); meter algo de cualquier manera; embutir; atestar2) (to fill (eg a turkey, chicken etc) with stuffing before cooking.) rellenar3) (to fill the skin of (a dead animal or bird) to preserve the appearance it had when alive: They stuffed the golden eagle.) disecar•- stuffing- stuff up
stuff1 n1. algowhat's that stuff on your shirt? ¿qué es eso que tienes en la camisa?2. cosashave you got all your stuff? ¿tienes todas tus cosas?stuff2 vb1. rellenar2. metertr[stʌf]■ what's that stuff on your shirt? ¿qué es eso que tienes en la camisa?■ do you like cauliflower? - no, I can't stand the stuff ¿te gusta la coliflor? - no, no la aguanto■ do you call this stuff lasagne? ¿a esto lo llamas lasaña?■ don't give me all that macho stuff! ¡no me vengas con esos cuentos de macho!1 (fill - container, bag, box) llenar ( with, de); (- cushion, toy, food) rellenar ( with, de); (- hole) tapar■ have you stuffed the turkey? ¿has rellenado el pavo?2 (dead animal) disecar3 (push carelessly, shove) meter, poner4 familiar (beat, thrash) dar una paliza a■ you can stuff your job! ¡métete el trabajo donde te quepa!\SMALLIDIOMATIC EXPRESSION/SMALLthat's the stuff! ¡así es!, ¡así me gusta!to do one's stuff hacer lo suyoto know one's stuff saber de lo que uno está hablandoto stuff one's face hartarse de comida, atiborrarse, ponerse morado,-astuff and nonsense tonterías nombre femenino pluralstuff ['stʌf] vt: rellenar, llenar, atiborrarstuff n1) possessions: cosas fpl2) essence: esencia f3) substance: cosa f, cosas fplsome sticky stuff: una cosa pegajosashe knows her stuff: es expertan.• chismes s.m.pl.• cosa s.f.• cuerpo s.m.• materia s.f.• material s.m.• mejunje s.m.• tela s.f.v.• ahitar v.• atestar v.• atiborrar v.• emborrar v.• empaquetar v.• hartar v.• hartarse v.• henchir v.• hinchar v.• llenar v.• meter sin orden v.• recalcar v.• rellenar v.
I stʌfmass noun1) (colloq)a) (substance, matter)what's this stuff called? — ¿cómo se llama esto or (fam) esta cosa?
this wine is good stuff — este vino es del bueno or está muy bien
what sort of stuff does he write? — ¿qué tipo de cosa(s) escribe?
that's the stuff! — así se hace!, así me gusta!
to do one's stuff: she went out on stage and did her stuff salió al escenario e hizo lo suyo; to know one's stuff — ser* un experto en la materia
b) ( miscellaneous items) cosas fpland stuff like that — y cosas de ésas, y cosas por el estilo
2) (nonsense, excuse) (colloq)surely you don't believe all that stuff he tells you? — tú no te creerás todo lo que te cuenta ¿no?
stuff and nonsense! — (dated) puro cuento! (fam)
3) ( basic element)
II
1)a) ( fill) \<\<quilt/mattress/toy\>\> rellenar; \<\<hole/leak\>\> taparto stuff something WITH something: we stuffed our pockets with apples nos llenamos los bolsillos de manzanas; to stuff oneself/one's face — (colloq) darse* un atracón (fam), ponerse* morado or ciego (Esp fam)
b) ( Culin) rellenarc) ( in taxidermy) disecar*d) (AmE Pol) \<\<ballot box\>\> adulterar2)a) ( thrust)b) ( put) (colloq) poner*c) (esp BrE sl)[stʌf]stuff her! — que se joda! (vulg)
1. N1) * (=substance, material)a) (lit)what's that stuff in the bucket? — ¿qué es eso que hay en el cubo?
"do you want some beetroot?" - "no, I hate the stuff" — -¿quieres remolacha? -no, la detesto
"would you like some wine?" - " no, thanks, I never touch the stuff" — -¿quieres un poco de vino? -no gracias, nunca lo pruebo
have you got any more of that varnish stuff? — ¿tienes más barniz de ese?
do you call this stuff beer? — ¿a esto lo llamas cerveza?
b) (fig)that's the stuff! — ¡muy bien!, ¡así se hace!
where have you put my stuff? — ¿dónde has puesto mis cosas?, ¿dónde has puesto mis bártulos or (Sp) chismes? *
can I put my stuff in your room? — ¿puedo poner mis cosas en tu cuarto?
all that stuff about how he wants to help us — todas esas historias or todo el cuento ese de que quiere ayudarnos
don't give me that stuff! I know what you're been up to! — ¡no me vengas con esas historias or ese cuento! ¡sé lo que pretendes!
stuff and nonsense! — † * ¡tonterías!, ¡puro cuento!
4) *to do one's stuff —
go on, Jim, do your stuff! let's see a goal! — ¡venga Jim! ¡muéstranos lo que vales, mete ese gol!
we'll have to wait for the lawyers to do their stuff — tendremos que esperar a que los abogados hagan su parte
- know one's stuffstrut I, 2.5) *I haven't got time for boyfriends, the cinema and stuff like that or and all that stuff — no tengo tiempo para novios, el cine y rollos por el estilo *
6) (=essence)the (very) stuff of sth: the pleasures and pains that are the stuff of human relationships — las alegrías y las penas que constituyen la esencia de las relaciones humanas
his feats on the tennis court are the stuff of legend — sus proezas en la cancha de tenis son legendarias
7) **8) (Brit)** (=girl, woman) hot 3.9) (Drugs) ** mercancía ** f10) †† (=fabric) género m, tela f2. VT1) (=fill, pack) [+ chicken, peppers, cushion, toy] rellenar ( with con); [+ sack, box, pockets] llenar ( with de); [+ hole, leak] tapar; (in taxidermy) [+ animal] disecar, embalsamarto stuff a ballot box — (US) (Pol) llenar una urna de votos fraudulentos
stuff o.s. (with food) * — atracarse or atiborrarse de comida *, darse un atracón *
2) * (=put)to stuff sth in or into sth — meter algo en algo
can we stuff any more in? — ¿caben más?
- stuff sth down sb's throatI'm sick of having ideology stuffed down my throat — estoy harto de que me metan la ideología a la fuerza *
3) (Brit)** (in exclamations)stuff you! — ¡vete a tomar por culo! (Sp) ***, ¡vete al carajo! (LAm) ***
oh, stuff it! I've had enough for today — ¡a la mierda! ¡por hoy ya vale! **
if you don't like it, you can stuff it — si no te gusta te jodes ***
(you know where) you can stuff that! — ¡ya sabes por dónde te lo puedes meter! **
stuff the government! — ¡que se joda el gobierno! ***
get stuffed! — ¡vete a tomar por culo! (Sp) ***, ¡vete al carajo! (LAm) ***
4) ** (=defeat) dar un palizón a *, machacar *3.VI * (=guzzle) atracarse de comida *, atiborrarse de comida *, darse un atracón *- stuff up* * *
I [stʌf]mass noun1) (colloq)a) (substance, matter)what's this stuff called? — ¿cómo se llama esto or (fam) esta cosa?
this wine is good stuff — este vino es del bueno or está muy bien
what sort of stuff does he write? — ¿qué tipo de cosa(s) escribe?
that's the stuff! — así se hace!, así me gusta!
to do one's stuff: she went out on stage and did her stuff salió al escenario e hizo lo suyo; to know one's stuff — ser* un experto en la materia
b) ( miscellaneous items) cosas fpland stuff like that — y cosas de ésas, y cosas por el estilo
2) (nonsense, excuse) (colloq)surely you don't believe all that stuff he tells you? — tú no te creerás todo lo que te cuenta ¿no?
stuff and nonsense! — (dated) puro cuento! (fam)
3) ( basic element)
II
1)a) ( fill) \<\<quilt/mattress/toy\>\> rellenar; \<\<hole/leak\>\> taparto stuff something WITH something: we stuffed our pockets with apples nos llenamos los bolsillos de manzanas; to stuff oneself/one's face — (colloq) darse* un atracón (fam), ponerse* morado or ciego (Esp fam)
b) ( Culin) rellenarc) ( in taxidermy) disecar*d) (AmE Pol) \<\<ballot box\>\> adulterar2)a) ( thrust)b) ( put) (colloq) poner*c) (esp BrE sl)stuff her! — que se joda! (vulg)
-
10 system
1) система || системный3) вчт операционная система; программа-супервизор5) вчт большая программа6) метод; способ; алгоритм•system halted — "система остановлена" ( экранное сообщение об остановке компьютера при наличии серьёзной ошибки)
- CPsystem- H-system- h-system- hydrogen-air/lead battery hybrid system- Ksystem- Lsystem- L*a*b* system- master/slave computer system- p-system- y-system- Δ-system -
11 BBC
1) Общая лексика: Би-Би-Си, Британская вещательная корпорация (http://news.bbc.co.uk/hi/russian/learn_english/newsid_4249000/4249656.stm)2) Спорт: Bam Bam Cole, Big Bad Carp3) Военный термин: Battery Box Cover, broadband chaff4) Техника: Bombay Bathroom Cleaner, back-to-back connection, building block concept, до нижней мёртвой точки (before bottom centre)5) Шутливое выражение: Bad Boy Channel, Beastie Boys Corporation, Big Ben Collective, Big Bucks Company, Bigots Broadcasting Company, Blair Broadcasting Censorship, Blair Brown Cronies, Blair's Broadcasting Corporation, Bloated Broadcaster Crushed, Bloody Bad Coverage, Bloody Broadcasting Company, British Bolshevik Commune, British Brainwashing Corporation, British Broadcasting Calamities, Brits Bashing Catholics, Buggers Broadcasting Communism, Bye Bye Colonies7) Юридический термин: Bad Boyz Club, Brilliant Brilliance Cruisers8) Автомобильный термин: front of bumper to back of cab, расстояние от передней части бампера до задней стенки кабины9) Ветеринария: Big Black Cat10) Грубое выражение: Bald Butts Currency, British Bullshit Channel, большой чёрный член (Big Black Cock)11) Музыка: Band Basket Crawl, Basic Band Committee12) Политика: Bash Bush Constantly13) Сокращение: British Broadcasting Company, Bromobenzylcyanide (Chemical warfare tear agent), Built-in Ballistic Computer, Block Check Character14) Физиология: Baby Bond Connect15) Вычислительная техника: Broadband Bearer Capability (B-ISDN)16) Транспорт: Big Block Chevy, Break Bulk Cargo17) Пищевая промышленность: Beef, Bacon, And Cheddar18) Фирменный знак: Bell Book And Candle, Bert Broadcasting Corporation, Big Buddha Cafe, Birthday Book Club, Black Box Communication, Blair Broadcasting Corporation, Boca Bearing Company, Boys Book Club, Bradford Beach Club, Britannia Biscuit Company, Brooks Barrel Company, Bucks Boarding Centre, Bukhari Brothers Corporation19) СМИ: Best Book Competition, Better Book Commentary, Bharat Broadcasting Corporation, Blundering Bombastic Cynicism, Bryan Broadcasting Company20) Деловая лексика: Bootable Business Card, Business To Business To Consumer21) Сетевые технологии: British Broadcasting Corporation, Broadband Bearer Capability-ёмкость широкополосного канала Поле класса канала, являющееся частью изначального адресного (сообщения), Building Backbone Cabling22) Полимеры: brombenzylcyanide23) Табуированная лексика: афроамериканец (Big Black Cock)24) ООН: Burmese Border Consortium25) Общественная организация: Better Benefits Coalition26) Должность: Better Balanced Coverage -
12 bbc
1) Общая лексика: Би-Би-Си, Британская вещательная корпорация (http://news.bbc.co.uk/hi/russian/learn_english/newsid_4249000/4249656.stm)2) Спорт: Bam Bam Cole, Big Bad Carp3) Военный термин: Battery Box Cover, broadband chaff4) Техника: Bombay Bathroom Cleaner, back-to-back connection, building block concept, до нижней мёртвой точки (before bottom centre)5) Шутливое выражение: Bad Boy Channel, Beastie Boys Corporation, Big Ben Collective, Big Bucks Company, Bigots Broadcasting Company, Blair Broadcasting Censorship, Blair Brown Cronies, Blair's Broadcasting Corporation, Bloated Broadcaster Crushed, Bloody Bad Coverage, Bloody Broadcasting Company, British Bolshevik Commune, British Brainwashing Corporation, British Broadcasting Calamities, Brits Bashing Catholics, Buggers Broadcasting Communism, Bye Bye Colonies7) Юридический термин: Bad Boyz Club, Brilliant Brilliance Cruisers8) Автомобильный термин: front of bumper to back of cab, расстояние от передней части бампера до задней стенки кабины9) Ветеринария: Big Black Cat10) Грубое выражение: Bald Butts Currency, British Bullshit Channel, большой чёрный член (Big Black Cock)11) Музыка: Band Basket Crawl, Basic Band Committee12) Политика: Bash Bush Constantly13) Сокращение: British Broadcasting Company, Bromobenzylcyanide (Chemical warfare tear agent), Built-in Ballistic Computer, Block Check Character14) Физиология: Baby Bond Connect15) Вычислительная техника: Broadband Bearer Capability (B-ISDN)16) Транспорт: Big Block Chevy, Break Bulk Cargo17) Пищевая промышленность: Beef, Bacon, And Cheddar18) Фирменный знак: Bell Book And Candle, Bert Broadcasting Corporation, Big Buddha Cafe, Birthday Book Club, Black Box Communication, Blair Broadcasting Corporation, Boca Bearing Company, Boys Book Club, Bradford Beach Club, Britannia Biscuit Company, Brooks Barrel Company, Bucks Boarding Centre, Bukhari Brothers Corporation19) СМИ: Best Book Competition, Better Book Commentary, Bharat Broadcasting Corporation, Blundering Bombastic Cynicism, Bryan Broadcasting Company20) Деловая лексика: Bootable Business Card, Business To Business To Consumer21) Сетевые технологии: British Broadcasting Corporation, Broadband Bearer Capability-ёмкость широкополосного канала Поле класса канала, являющееся частью изначального адресного (сообщения), Building Backbone Cabling22) Полимеры: brombenzylcyanide23) Табуированная лексика: афроамериканец (Big Black Cock)24) ООН: Burmese Border Consortium25) Общественная организация: Better Benefits Coalition26) Должность: Better Balanced Coverage -
13 Windows UI control
"A UI control available through WinUI that allow an app take on the look and feel of Windows. Regardless of the developer's choice to use HTML/JS or C++/C#, the developer can create an application that carries the new Windows experience. This includes controls enabling the display, entry and manipulation of data and content including View Controls, Text Controls, Pattern Controls, Overlay Controls, Media (Video & Audio) Controls, Content Controls, Collection Controls, and Basic Controls. These controls are available for Windows Store apps." -
14 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
15 political process
1) пол. политический процесса) (взаимодействие политических структур в рамках формальных, законодательно определенных процедур по принятию и осуществлению обязательных для всего общества решений)б) (процесс формирования какой-л. партии, проведения выборов и т. п.)2) соц. политический процесс (любые социальные взаимодействия и взаимоотношения, имеющие отношение к политической сфере, к распределению и использованию власти)See: -
16 BAC
1) Общая лексика: hum. сокр. Bacterial Artificial Chromosome, British Accreditation Council for Independent Further and Higher Education, British Association of Counselling2) Спорт: Beaches Aquatic Club3) Военный термин: Base Area Code, Basic Airborne Course, British Air Commission, Broad Area Coverage, Budget Activity Code, Budget Advisory Committee, base area commandant, battle assessment calculator, bistatic alerting and cueing5) Юридический термин: Blood Alcohol Content6) Бухгалтерия: Budgeted At Completion7) Автомобильный термин: bypass air control valve8) Сокращение: Barometric Altitude Control, Battle Area Clearance, British Aerospace Corporation, British Aircraft Corporation9) Вычислительная техника: binary asymmetric channel, binary-analog conversion10) Нефть: buffer address counter11) Иммунология: bacterial antigen complex12) Биотехнология: Bacterial artificial chromosome13) Фирменный знак: Bourn Again Creations14) Экология: biological activated carbon15) Деловая лексика: плата за заправку судна топливом (bunker adjustment charge)16) Образование: Breath Alcohol Concentration17) Сетевые технологии: balanced asynchronous class18) ЕБРР: Business Advisory Council19) Полимеры: British Association of Chemists20) Химическое оружие: Budget at completion21) Авиационная медицина: blood alcohol concentration22) Расширение файла: Backup24) Имена и фамилии: Brandon Augustus Caesar25) Фармация: Benzalkonium chloride( бензалкония хлорид)26) Должность: Breath Analyzer Coordinator -
17 BAc
1) Общая лексика: hum. сокр. Bacterial Artificial Chromosome, British Accreditation Council for Independent Further and Higher Education, British Association of Counselling2) Спорт: Beaches Aquatic Club3) Военный термин: Base Area Code, Basic Airborne Course, British Air Commission, Broad Area Coverage, Budget Activity Code, Budget Advisory Committee, base area commandant, battle assessment calculator, bistatic alerting and cueing5) Юридический термин: Blood Alcohol Content6) Бухгалтерия: Budgeted At Completion7) Автомобильный термин: bypass air control valve8) Сокращение: Barometric Altitude Control, Battle Area Clearance, British Aerospace Corporation, British Aircraft Corporation9) Вычислительная техника: binary asymmetric channel, binary-analog conversion10) Нефть: buffer address counter11) Иммунология: bacterial antigen complex12) Биотехнология: Bacterial artificial chromosome13) Фирменный знак: Bourn Again Creations14) Экология: biological activated carbon15) Деловая лексика: плата за заправку судна топливом (bunker adjustment charge)16) Образование: Breath Alcohol Concentration17) Сетевые технологии: balanced asynchronous class18) ЕБРР: Business Advisory Council19) Полимеры: British Association of Chemists20) Химическое оружие: Budget at completion21) Авиационная медицина: blood alcohol concentration22) Расширение файла: Backup24) Имена и фамилии: Brandon Augustus Caesar25) Фармация: Benzalkonium chloride( бензалкония хлорид)26) Должность: Breath Analyzer Coordinator -
18 bac
1) Общая лексика: hum. сокр. Bacterial Artificial Chromosome, British Accreditation Council for Independent Further and Higher Education, British Association of Counselling2) Спорт: Beaches Aquatic Club3) Военный термин: Base Area Code, Basic Airborne Course, British Air Commission, Broad Area Coverage, Budget Activity Code, Budget Advisory Committee, base area commandant, battle assessment calculator, bistatic alerting and cueing5) Юридический термин: Blood Alcohol Content6) Бухгалтерия: Budgeted At Completion7) Автомобильный термин: bypass air control valve8) Сокращение: Barometric Altitude Control, Battle Area Clearance, British Aerospace Corporation, British Aircraft Corporation9) Вычислительная техника: binary asymmetric channel, binary-analog conversion10) Нефть: buffer address counter11) Иммунология: bacterial antigen complex12) Биотехнология: Bacterial artificial chromosome13) Фирменный знак: Bourn Again Creations14) Экология: biological activated carbon15) Деловая лексика: плата за заправку судна топливом (bunker adjustment charge)16) Образование: Breath Alcohol Concentration17) Сетевые технологии: balanced asynchronous class18) ЕБРР: Business Advisory Council19) Полимеры: British Association of Chemists20) Химическое оружие: Budget at completion21) Авиационная медицина: blood alcohol concentration22) Расширение файла: Backup24) Имена и фамилии: Brandon Augustus Caesar25) Фармация: Benzalkonium chloride( бензалкония хлорид)26) Должность: Breath Analyzer Coordinator -
19 processor
процессор ( аппаратное устройство или обрабатывающая программа); узел обработки- airborne data processor
- airborne processor
- algorithm processor
- alterable processor
- ancillary control processor
- arithmetic processor
- array processor
- assembly language processor
- associative processor
- attached processor
- auxiliary processor
- back-end processor
- background job processor
- background processor
- basic processor
- batch-mode processor
- bit-slice processor
- bit-stream processor
- byte-slice processor
- center processor
- central data processor
- central processor
- command processor
- communications processor
- console command processor
- content-addressable processor
- control processor
- data communication processor
- data flow processor
- data interchange processor
- data link processor
- data processor
- database processor
- dead processor
- demand-paged processor
- diagnostic processor
- digital signal processor
- digital speech processor
- display processor
- distributed database processor
- dual processor - fast-Fourier-transform processor
- FFT processor
- file control processor
- file processor
- file revision processor
- flexible processor
- floating-point arithmetic processor
- floating-point processor
- front-end processor
- gateway processor
- general-purpose processor
- general-register processor
- geometric arithmetic parallel processor
- geometry processor
- graphic job processor
- graphics processor
- heterogeneous-element processor
- highly concurrent processor
- host processor
- host-language processor
- I/O processor
- idle processor
- image processor
- input/output processor
- instruction processor
- integrated array processor
- interface processor
- interruptable processor
- language processor
- language-specific processor
- large-scale processor
- linguistic processor
- local processor
- logic processor
- look-ahead processor
- loosely coupled processors
- maintenance processor
- master processor
- mathematical processor
- math processor
- matrix-vector processor
- message processor
- microprogrammable processor
- mid-range processor
- modular acoustic processor
- multipipeline processor
- multiunit processor
- nearby processor
- node processor
- non-neighbor processor
- nonsegmented processor
- N-pipe processor
- numeric processor
- off-line processor
- one-bit processor
- on-line processor
- optical matrix processor
- orthogonal processor
- out-of-order processor
- output test processor
- painting processor
- Pentium processor
- peripheral processor
- pipeline processor
- pipelined processor
- pixel processor
- programmed data processor
- queue processor
- quiescent processor
- real-time processor
- reference processor
- resource allocation processor
- RISC-based processor
- RISC-processor
- satellite processor
- scientific processor
- segmented processor
- self-dispatching processor
- sending processor
- service processor
- simulation processor
- single-cycle processor
- slave processor
- SMT processor
- soft architecture processor
- software processor
- specially designed processor
- speech processor
- speech-synthesis processor
- stand-alone processor
- stochastic processor
- support processor
- system processor
- systolic processor
- terminal processor
- test result processor
- test-and-repair processor
- text processor
- tightly coupled processors
- transform processor
- uncooperative processor
- vector processor
- video-display processor
- viewing processor
- virtual processor
- VLSI array processor
- voice processor
- wavefront array processor - word-oriented processorEnglish-Russian dictionary of computer science and programming > processor
-
20 test
1) испытание; испытания; проверка; контроль (см. тж testing) || испытывать; проверять; контролировать2) тест || тестировать3) стат. критерий•- actual value test
- ageing test
- alpha test
- basic test
- bench test
- benchmark test
- best unbiased test
- beta test
- bias test
- bit-stuck test
- boundary test
- busy test
- checkerboard test
- chi-square test
- class test
- compatibility test
- conditional test
- conditional-branching test
- content test
- count test
- crippled leapfrog test
- data measuring test
- delay test
- design acceptance test
- destructive test
- deterministic test
- diagnostic test
- dynamic test
- echo test
- engineering test
- environmental test
- evaluation test
- exchange test
- exhaustive test
- fault detection test
- formal test
- functional test
- function-independent test
- galloping 0's and 1's test
- galloping column test
- galwrec test
- high-low bias test
- impulse test
- in-house test
- in-process test
- inspection test
- integration test
- jerry-rigged test
- large-scale integration test
- leapfrog test
- leg test
- life test
- limit test
- link test
- logical relationship test
- longevity test
- long-term life test
- loop test
- loopback test
- LSI test
- march test
- marching ones and zeroes test
- marching ones and zeros test
- marginal test
- masest test
- maximum test
- model test
- multiple station test
- multithread test
- nondestructive test
- off-line test
- off-nominal tests
- one-shot tests
- one-sided test
- one-tailed test
- on-line test
- open test
- parameterized test
- path test
- pattern-sensitivity test
- penetration test
- perceptual test
- perimeter desturb test
- personality test
- ping-pong test
- preoperational test
- primary purpose test
- production acceptance test
- product-proof test
- program test
- qualification test
- read-margin test
- reasonableness test
- regression tests
- related transaction test
- reliability test
- remote test
- row disturb test
- sampling test
- screening test
- shifted diagonal test
- sign test
- significance test
- simulation test
- sliding-ONE test
- static test
- statistical test
- status test
- stress test
- suppression test
- system test
- temperature test
- test of grammaticality
- test of normality
- timing tests
- torture test
- total test
- trouble-shooting test
- truth-table test
- two-sample test
- two-tailed test
- volume test
- wafer test
- walking 1 test
- walking column testEnglish-Russian dictionary of computer science and programming > test
- 1
- 2
См. также в других словарях:
Content analysis — or textual analysis is a methodology in the social sciences for studying the content of communication. Earl Babbie defines it as the study of recorded human communications, such as books, websites, paintings and laws. According to Dr. Farooq… … Wikipedia
Content Migration — is the process of moving information stored on a Web content management system(CMS), Digital asset management(DAM), Document management system(DMS), or flat HTML based system to a new system. Flat HTML content can entail HTML files, Active Server … Wikipedia
Content adaptation — is the action of transforming content to adapt to device capabilities. Content adaptation is usually related to mobile devices that require special handling because of their limited computational power, small screen size and constrained keyboard… … Wikipedia
Basic oxygen steelmaking — ( BOS, BOF, Linz Donawitz Verfahren, LD converter ) is a method of steelmaking in which carbon rich molten iron is made into steel. The process is an improvement over the historically important Bessemer process. The LD converter is named after… … Wikipedia
Content determination — is a subtask of Natural language generation, which involves deciding the on the information communicated in a generated text. It is closely related to Document structuring NLG task. Contents 1 Example 2 Issues 3 Techniques … Wikipedia
Basic life support — (BLS) is a specific level of prehospital medical care provided by trained responders, including emergency medical technicians, in the absence of advanced medical care. Basic Life Support consists of a number of life saving techniques focused on… … Wikipedia
Content management — Content management, or CM, is the set of processes and technologies that support the collection, managing, and publishing of information in any form or medium. In recent times this information is typically referred to as content or, to be precise … Wikipedia
Content storage management — (CSM) is a technique for the evolution of traditional media archive technology used by media companies and content owners to store and protect valuable file based media assets. CSM solutions focus on active management of content and media assets… … Wikipedia
Basic metabolic panel — Diagnostics LOINC 24320 4, 24321 2, 51990 0 A basic metabolic panel (BMP) is a set of seven or eight blood chemical … Wikipedia
Basic Military Qualification — is the recruit training that is undergone to produce non commissioned members of the Canadian Forces. It is designed to introduce ordinary citizens of Canada to the CF way of life by indoctrination of CF values, weapons training, first aid,… … Wikipedia
Basic Instinct — This article is about the 1992 film. For the Ciara album, see Basic Instinct (album). For Nick Curran the musician, see Nick Curran (musician). For other uses, see Basic Instinct (disambiguation). Basic Instinct Theatrical release poster … Wikipedia